应用:机器人 工业4.0 智能家居 无人系统 虚拟助理 商业智能 可穿戴 安防 医疗 金融 其他

技术:云计算 大数据 核心硬件 操作系统 计算机视觉 机器学习 自然语言处理 语音识别 模式识别 其他

当前位置:首页>技术 >计算机视觉>提升人工智能效率 量子计算比经典算法节省时间

提升人工智能效率 量子计算比经典算法节省时间

2018-12-23 来源:网络转载责任编辑:AI小爱 浏览数:99 AI圈

核心提示:量子计算机有望提供更强的计算能力。量子计算机提供了另一条增强计算能力的思路。它并行计算的特性,使得它可以一次同时处理多个任务,有望实现计算能力上的超越。量子计算的算力呈指数级增长量子计算的核心优势是可

量子计算机有望提供更强的计算能力。量子计算机提供了另一条增强计算能力的思路。它并行计算的特性,使得它可以一次同时处理多个任务,有望实现计算能力上的超越。

提升人工智能效率 量子计算比经典算法节省大量时间

量子计算的算力呈指数级增长

量子计算的核心优势是可以实现高速并行计算。在计算机科学中,无论经典计算还是量子计算,他们的计算功能的实现都可以分解为简单的逻辑门的运算,包括:“与”门, “或”门,“非”门,“异或”门等。简单来讲,每一次逻辑门的运算(简称操作)都是要消耗一个单位时间来完成。

经典计算机的运算模式通常是一步一步进行的。它的每一个数字都是单独存储的,而且是逐个运算。所以对于 4 个数字进行同一个操作时,要消耗 4 单位时间。而量子计算中,一个 2 个量子比特的存储器可以同时存储 4 个数字,这里一个量子态可以代表所有存储的数字。

提升人工智能效率 量子计算比经典算法节省大量时间

科学家通过特定设计对量子态进行一次变换,即可对 4 个数字同时操作,而且只消耗 1 单位时间。这种变换相当于经典计算的逻辑门,实现了对存储器中的数字并行运算,这被称为量子并行计算。可以看到,当量子比特数量越大时,这种运算速度的优势将越明显。它可以达到经典计算机不可比拟的运算速度和信息处理功能。

量子计算机的量子比特数量以指数形式增长,算力将以指数的指数增长。对于量子计算机,在半导体材料和超导材料等领域,科学家也已经积累了数十年的理论与经验。

提升人工智能效率 量子计算比经典算法节省大量时间

现有最有希望的量子计算机方案之一就是低温超导系统,它涉及了半导体材料与超导材料的应用,主要是基于硅晶体,掺杂一定量的超导材料,实现量子计算。而现有的技术积累将极大促进该方案的发展与快速突破,用更短的时间(相比与经典计算机)实现大规模的商业化应用。

可以看到,量子计算机的量子比特数量以指数增长的形式快速上升,从 2003 年起的 1 位量子比特,到 2013 年 512 位量子比特的计算机,再到 2015 年实现 1000 位量子比特。目前,非通用型量子计算机的已经实现了 1000 位量子比特,在特定算法上(比如模拟退火,一种优化方法),计算效率比经典计算机要快一亿倍。

提升人工智能效率 量子计算比经典算法节省大量时间

量子计算机的全球商业化进程加速

量子计算机经过近 40 年的时间的理论研究阶段,在 2007 年首次实现硬件方面商业化。目前发展迅速的是非通用型量子计算机,而通用型量子计算机还处于起步阶段。我们认为,通用型量子计算机和非通用型量子计算机最终将在市场上共存,并最终共同向经典计算机的市场份额发起挑战。

提升人工智能效率 量子计算比经典算法节省大量时间

2007 年,D-wave Systems 实现了历史上第一台商用量子计算机。宣布研制成功16量子比特的量子计算机——“猎户座”(Orion)。D-wave 公司的量子计算机是用超导量子器件做成的。所使用量子计算机方式是绝热量子计算,是将量子计算体系放置在体系的基态,而最终的计算结果就是最后的量子体系的基态。

2011 年 5 月 11 日,该公司正式发布了全球第一款商用型量子计算机“D-Wave One”,实现了 128 位量子比特。它不是通用量子计算机,并不能运行所有的量子算法。D-wave 实际上是一台量子退火机 (quantum annealing machine),在图像搜索方面确实具有优势。

Google 和 NASA 花1000 万美金买一台 D-wave,共同建立了 Quantum AI Lab。2013 年它研制出的产品D-wave Two,实现了 512 位量子比特,并将其销售给了 Google,用于 Google 内部的量子计算的相关研发。截止到 2014 年,该公司的累计融资总额达到 1.6 亿美元。

打赏
分享到:
阅读上文 >> 转变思维模式 全面拥抱人工智能
阅读下文 >> 人工智能之OCR识别技术简析

版权与免责声明:

凡注明稿件来源的内容均为转载稿或由企业用户注册发布,本网转载出于传递更多信息的目的;如转载稿涉及版权问题,请作者联系我们,同时对于用户评论等信息,本网并不意味着赞同其观点或证实其内容的真实性;


本文地址:http://www.aiquan.biz/Skill/show-2779.html

转载本站原创文章请注明来源:AI圈

推荐新闻

更多

行业专题

更多行业专题

VIP会员

微信“扫一扫”
即可分享此文章

Copyright © 2008-2018 Aiquan.biz All Rights Reserved

服务热线: ICP备案号: